
Eur. Phys. J. D 8, 189–192 (2000) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We show that a classical Impact Parameter Method may be derived when taking fully into
account the smallness of the ratio between the electron and nuclear masses. It allows to calculate, exactly
as in the quantum version, projectile scattering and therefore recoil momenta required for the interpretation
of recent measurements. We prove an additivity theorem which allows, in particular, to reduce the n-non-
interacting electron problem to a set of n one-electron problems. Consequences for the interpretation of
target recoil measurements are discussed.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 34.50.Fa Electronic excitation
and ionization of atoms (including beam-foil excitation and ionization)

1 Introduction

The impact parameter method plays a central role in the
theory of ion(atom)-atom collision processes: while the rel-
ative motion of the nuclei is represented by a straight-line
trajectory, the electron motion is treated quantum me-
chanically. This method brings into the theory the enor-
mous simplification that arises from the smallness of the
ratio ε of the electron mass me to the reduced mass of the
nuclei µ [1]. It allows to determine cross-sections differen-
tial in projectile scattering angle [2], for small scattering
angles, including both electron-nuclei and internuclear in-
teractions. We refer hereafter to this theory as the quan-
tum impact parameter method. A similar classical theory
can be set up in which the electron motion is treated clas-
sically, and we refer to such an approach as the classical
impact parameter method. It has been used to calculate
cross-sections for a variety of one-electron processes (see
e.g. [3]). In the case of scattering by a central potential the
relation between classical and quantum impact parameter
methods has been established [2]. It shows that the mo-
mentum transfer in the classical theory is linear in the
potential.

In the present contribution we show that projectile
scattering may also be calculated to first order in ε =
me/µ and that the corresponding limit simplifies consid-
erably the solution of the problem for the case of n non-
interacting electrons [4]. This is of particular interest for
the application of CTMC calculations to the interpreta-
tion of present day measurements of recoil distributions
[5,6].

Atomic units are used unless otherwise stated.
a e-mail: salin@lpcm.u-bordeaux.fr

2 Theory

We write down the equations of motion in the center-of-
mass (CM) frame. Consider first the one-electron case.
Let R be the projectile position vector with respect to
the target nucleus and r that of the electron with respect
to the center of mass of the nuclei. We designate by P
and p the momenta conjugate to R and r respectively.
Hamilton function reads

H =
P 2

2µ
+

p2

2me
+ V (r,R). (1)

It is convenient to split the potential into two parts

V (r,R) = Vel(r,R) + Vnuc(R), (2)

where Vel is the interaction potential between the elec-
tron and nuclei whereas Vnuc is the internuclear potential.
Hamilton equations are

dRi
dt

=
Pi
µ

(3a)

dPi
dt

= −dV (r,R)
dRi

(3b)

dri
dt

=
pi
me

(3c)

dpi
dt

= −dVel(r,R)
dri

, (3d)

where the index i labels the Cartesian components of the
vectors. To solve equation (3) to first order in ε = me/µ,
we may determine R(t) to first order in ε. From now on,
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we confine ourselves to small angle scattering so that the
variation of P given by (3b) is of order 0(ε) with respect
to the initial value µv. Consequently R = R0(t) = vt+ρ
where ρ is the impact parameter and the origin of time
is fixed at the distance of minimum approach. This is
simply the usual impact parameter equation, as could be
expected. For clarity we designate by R0(t) the value of
R when calculated in this way. As a consequence, equa-
tions (3c, 3d) for the electron motion are completely de-
coupled from the equations for the relative motion of the
heavy particles once the expression for R0(t) is substituted
into the potential in (3d), as in the quantum impact pa-
rameter approximation. We note also that, exactly as in
the quantum impact parameter approximation, the inter-
nuclear potential plays no role in the electronic evolution.
Until now, no new result has been obtained: this form of
solution has been used by many authors to evaluate the
CTMC probability of various electronic processes (see e.g.
[3]). The error associated with the fact that the obtained
solution is only correct to first order in ε is very small as
confirmed in actual calculations.

Once Hamilton equations for the electron motion have
been solved, it is possible to determine the variation of P
to first order in ε. This is done by solving equation (3b)
with r = r0(t) (the solution just derived for the electronic
evolution) and R = R0(t). One gets

dPi
dt

= −
[

dVel(r0(t),R)
dRi

+
dVnuc(R)

dRi

]
R=R0(t)

. (4)

The latter expression shows the additivity of the internu-
clear and electronic interactions for the determination of
the momentum change in the nuclear relative motion. If
we call ∆P the momentum change over the collision in
the relative nuclear motion,

∆P = ∆Pel +∆Pnuc, (5)

where ∆Pel is the momentum change due to the interac-
tion with the electron and ∆Pnuc that due to the inter-
nuclear interaction. We call the latter result the additivity
theorem: when a calculation is performed to first order in
ε the momentum change in the nuclear relative motion is
the sum of one term due only to the electron and another
one due to the internuclear interaction. We note that the
linearity in the potential had already been proved in ref-
erence [2] for the case of scattering by a central potential
when looking at the classical limit of the quantum impact
parameter method (see Eq. (38) of [2]).

We are now in a position to understand how the n in-
dependent electron problem may be greatly simplified: it
is a direct consequence of the additivity theorem for a so-
lution to first order in ε. It is not necessary to write down
the corresponding equations in details since the general-
ization is trivial. In fact, in the absence of electron-electron
interaction, Hamilton equations for each electron are ex-
actly the same as above. Once the time evolution is de-
termined for each electron, the momentum transfer to the
projectile may be calculated by application of the addi-
tivity theorem, i.e. summing the contribution to the in-
ternuclear momentum transfer coming from each electron.

This means that one has to solve a sequence of n indepen-
dent one electron problems and the momentum change for
the internuclear motion is that obtained by summing the
contribution from all electrons to that of the internuclear
interaction. Once the momentum change of the electrons
and that associated with the relative motion of the nuclei
has been determined in the CM, it is a trivial task to de-
termine the projectile and target final momenta by using
conservation of momentum and the transformation from
the center of mass to the laboratory frame. Further gen-
eralizations may be easily derived (e.g. molecular targets
and/or projectiles).

In practice, the procedure consists in solving Hamil-
ton equations (3b, 3c, 3d) – one might include as well
(3a), the difference being only of order ε – for each elec-
tron with the internuclear potential omitted. The momen-
tum transfer due to the internuclear potential is calculated
separately. The set of initial conditions for the n-electron
problem corresponds, of course, to the tensorial product
of n sets of initial conditions for the one-electron prob-
lems. So, the additivity theorem is used to combine the
momentum transfers in the n sets of solutions to produce
the one associated with the n-electron problem. We see
that the classical impact parameter approximation brings
a tremendous simplification in the evaluation of the dy-
namics for the case of n non-interacting electrons. Con-
sider that we have to carry out p calculations per electron
to keep the statistical error below some prescribed value.
Then, the usual n-CTMC calculations require pn trajec-
tories and therefore powerful vector computers [5]. With
our method only np trajectories are required and the cal-
culations can be performed on any PC, while maintaining
the error at the level of ε, which is usually negligible. It is
gratifying that physical insight may still be in a position
to compete with the enormous effectiveness of present day
computer industry.

The validity of the classical impact parameter method
may be verified through the knowledge of the final trans-
verse momentum. For small angles:

∆P⊥ = µvθCM, (6)

where θCM is the center of mass scattering angle. The va-
lidity condition for the first order evaluation is θCM � 1.
This is verified in a very large class of ion-atom processes.
The approximation breaks down when the scattering an-
gle is appreciable, i.e. for small impact parameters, low
energies or when a very large number of electrons is in-
volved. One may note that, at high energies, large scat-
tering angles are associated with small impact parameters
and the scattering is then usually dominated by the inter-
nuclear interaction. Therefore, an obvious generalization
could be explored in which R(t) would be determined by
the internuclear potential alone and the corresponding tra-
jectory used to solve for the electron motion. The analo-
gous method is well documented as a generalization of the
quantum impact parameter equation.
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3 Discussion

Beside its usefulness in performing the calculations for n
independent electrons, the additivity theorem brings in-
formation which is useful in interpreting the comparison
between CTMC results and experiment. We outline briefly
some examples. We now work in the Laboratory-frame
(Lab) and label any quantity in this frame relative to the
projectile (resp. target) by a p (resp. t) subscript. We call
∆pL the total momentum change of the electrons in the
Lab frame. The momentum transfer in the Lab frame is
expressed in terms of the momentum transfer ∆P, solu-
tion of (3), through a linear transformation:

∆Pp = ∆P−mp/(mp +mt)∆pL (7a)
∆Pt = −∆P−mt/(mp +mt)∆pL (7b)

where mp and mt are the projectile and target mass re-
spectively. Therefore, the additivity theorem also works in
the Lab frame.

The projectile and target momentum change may be
decomposed into an internuclear [∆Pp,t(nuc)] and “elec-
tronic” contribution (or rather a two-center interaction:
the electron interacts at the same time with the projec-
tile and target). As the internuclear potential is a central
potential, it causes a longitudinal momentum transfer of
order ε with respect to the transverse momentum transfer
∆Pp(nuc) ' ∆P⊥p (nuc) = −∆P⊥t (nuc). Therefore, the
additivity theorem proves that the internuclear potential
gives a negligible contribution to the target longitudinal
momentum change: any transfer of longitudinal momen-
tum from the projectile to the recoiling nucleus must be
transmitted via the electrons.

Consider the case of longitudinal momentum analysis.
If we call ∆Eel the change in energy of the electron over
the collision, conservation of energy gives:

∆Eel = Mpv
2/2−Mp(v +∆P ‖p /Mp)2/2

− (∆P⊥p )2/2Mp − (∆Pt)2/2Mt (8)

and to first order in ε,

∆Eel/v = −∆P ‖p + 0(ε). (9)

Conservation of momentum in the Lab-frame yields

∆P
‖
t +∆p

‖
L −∆Eel/v = 0. (10)

As the internuclear interaction does not contribute, the
longitudinal recoil momentum is a direct measure of the
electronic longitudinal momentum change. This property
is merely a kinematical property and a direct consequence
of the smallness of ε [6]. It is independent of the form and
strength of the projectile-electron interaction. Therefore,
its analysis in terms of a similarity between the projectile
and a photon (see Sect. IV.A of Ref. [6]) is misleading.
We note that the above conclusion is valid for processes
involving any number of electrons (interacting or not).

The transverse momentum analysis is made extremely
simple when noting that, for small θCM, the projectile

scattering angle in the Lab-frame is such that

Mpθp = µθCM + 0(θ, ε). (11)

The target transverse momentum is obtained readily by
application of momentum conservation in the Lab-frame

∆P⊥t +∆p⊥L −Mpvθp = 0(θ, ε). (12)

Let us now analyse the situation, observed e.g. in refer-
ence [6], in which the momentum transfer to the projectile
∆Pp is much smaller than ∆P⊥t and, therefore, ∆p⊥L . This
is the case, for example, for dipolar interactions, as can
be checked from quantal calculations. However, the very
fact that CTMC calculations, in which dipolar processes
are strongly suppressed [7], give rise to similar situations
(i.e. ∆P⊥p � ∆P⊥t ) proves that it does not necessarily
correspond to a dipolar interaction, as often assumed in
the analysis of experiments [6]. Indeed, the two-center na-
ture of the electronic potential allows processes in which
a small transverse momentum transfer from projectile to
target goes along with a strong electron-target nucleus
transverse momentum transfer (see Fig. 6 of Ref. [6]). In
fact, equation (7) shows that there is nothing exceptional
in this since it corresponds to

∆P⊥ ' mp/(mp +mt)∆p⊥L (13)

Now, equation (3b) for ∆P does not depend on masses
while condition (13) depends on mp/mt. Therefore, for
identical potentials, the satisfaction of condition (13) will
depend on nuclear masses. This is a further confirmation
that the case of small transverse momentum transfer to
the projectile does not imply necessarily a dipolar photon-
like interaction.

4 Conclusion

We have shown that the classical impact parameter for-
mulation is completely adequate to describe many particle
interactions. It allows a more thorough analysis of multi-
electron processes in terms of independent electron exci-
tations and internuclear interaction, as exemplified with
a few conclusions that can be reached straightforwardly
from our formulation. The CTMC method is not the only
model available that includes many particle interactions
and the coupling between electronic and nuclear motion
in a consistent way. The additivity theorem shows that it is
equivalent, for small ε, to a separate treatment of the elec-
tronic and nuclear interactions, exactly as for the quantum
impact parameter case [8]. Exactly as in the quantum case,
one should speak of a two-center situation (rather than a
three-body) since the evolution of the electrons within the
field of the nuclei may be separated from the evolution
involving the internuclear interaction. The additivity theo-
rem turns out to be a valuable tool to study more complex
situations like collisions involving molecules.

Thanks are due to P.D. Fainstein for useful discussions and
critical comments on the manuscript.
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